Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering.

نویسندگان

  • Lauren Flynn
  • Paul D Dalton
  • Molly S Shoichet
چکیده

We have developed a method to create longitudinally oriented channels within poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels for neural tissue engineering applications. Incorporated into an entubulation strategy, these scaffolds have the potential to enhance nerve regeneration after transection injuries of either the spinal cord or the peripheral nerve by increasing the available surface area and providing guidance to extending axons and invading cells. The fabrication process is straightforward and the resultant scaffolds are highly reproducible. Polycaprolactone (PCL) fibers were extruded and embedded in transparent, crosslinked pHEMA gels. Sonication of the pHEMA/PCL composite in acetone resulted in the complete dissolution of the PCL, leaving longitudinally oriented, fiber-free channels in the pHEMA gel. Regulating the size and quantity of the PCL fibers allowed us to control the diameter and number of channels. Small and large channel scaffolds were fabricated and thoroughly characterized. The small channel scaffolds had 142+/-7 channels, with approximately 75% of the channels in the 100-200 micro m size range. The large channel scaffolds had 37+/-1 channels, with approximately 77% of the channels in the 300-400 micro m range. The equilibrium water content (EWC), porosity and compressive modulus were measured for each of the structures. Small and large channel scaffolds had, respectively, EWCs of 55.0+/-1.2% and 56.2+/-2.9%, porosities of 35+/-1% and 40+/-1% and compressive moduli of 191+/-7 and 182+/-4kPa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of poly(2-Hydroxyethyl Methacrylate) Scaffolds for Tissue Engineering

Physical properties of scaffolds intended for myocardial tissue regeneration were studied. Mechanical properties and degradation rates were evaluated for degradable scaffolds composed of poly (2-hydroxyethyl methacrylate) (pHEMA) crosslinked with polycaprolactone (PCL). pHEMA copolymerized with tetraethylene glycol as a crosslinker served as a control. Fibroblast cells were used for cytotoxicit...

متن کامل

Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate)

Human periodontal ligament (PDL) cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate) (PMEA) is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for t...

متن کامل

Hydrophilic molecularly imprinted poly(hydroxyethyl-methacrylate) polymers.

Highly cross-linked 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) dimethacrylate with poly(ethylene glycol) of molecular weight 600 (PEG600DMA) were molecularly imprinted with hydrophilic templates glucose and proxyphylline using water as a solvent. Glucose-imprinted polymers showed increased recognitive capacity compared to nonimprinted polymers as well as increased glucose upta...

متن کامل

Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering.

A hydrogel scaffold of well-defined geometry was created and modified with laminin-derived peptides in an aqueous solution, thereby maintaining the geometry of the scaffold while introducing bioactive peptides that enhance cell adhesion and neurite outgrowth. By combining a fiber templating technique to create longitudinal channels with peptide modification, we were able to synthesize a scaffol...

متن کامل

Poly-HEMA as a drug delivery device for in vitro neural networks on micro-electrode arrays.

Delivery of pharmacological agents in vitro can often be a difficult, time consuming and costly process. In this paper, we describe an economical method for in vitro delivery using a hydrogel of poly hydroxyethyl methacrylate (PHEMA) that can absorb up to 50% of its weight of any water-solubilized pharmacological agent. This agent will then passively diffuse into surrounding media upon applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 24 23  شماره 

صفحات  -

تاریخ انتشار 2003